

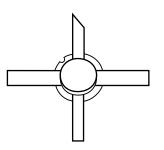
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

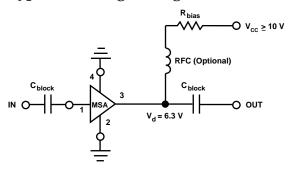
MSA-0420

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 4.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- 16.0 dBm Typical $P_{1 dB}$ at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Metal/Beryllia Microstrip Package


Description

The MSA-0420 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic,


high reliability package. This MMIC is designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's $10\,\mathrm{GHz}\,\mathrm{f_T}, 25\,\mathrm{GHz}\,\mathrm{f_{MAX}},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

200 mil BeO Package

Typical Biasing Configuration

5965-9574E 6-326

MSA-0420 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	120 mA				
Power Dissipation ^[2,3]	850 mW				
RF Input Power	+13dBm				
Junction Temperature	200°C				
Storage Temperature	−65 to 200°C				

Thermal Resistance $^{[2,4]}$:						
$\theta_{\rm jc} = 40^{\circ} { m C/W}$						

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 25 mW/°C for $T_C > 166$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of $q_{\rm jc}$ than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25$ °C

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain ($ S_{21} ^2$)	f = 0.1 GHz	dB	7.5	8.5	9.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 2.5 GHz	dB		± 0.6	± 1.0
f _{3 dB}	3 dB Bandwidth		GHz		4.3	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.7:1	
vswn	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	14.0	16.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		30.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	5.7	6.3	6.9
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 40 to 110 mA. Typical performance as a function of current is on the following page.

MSA-0420 Typical Scattering Parameters (Z $_{0}$ = 50 $\Omega,$ $T_{_{A}}$ = 25 $^{\circ}C,$ $I_{_{d}}$ = 90 mA)

Freq.	S_{11}		\mathbf{S}_{21}		$\mathbf{S_{12}}$			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.25	177	8.6	2.70	175	-16.4	.151	1	.03	-30
0.2	.25	173	8.6	2.69	170	-16.5	.150	1	.04	– 59
0.4	.24	167	8.6	2.69	159	-16.5	.150	-1	.07	– 79
0.6	.22	160	8.5	2.67	149	-16.4	.152	- 2	.10	- 92
0.8	.21	154	8.5	2.66	139	-16.3	.154	- 2	.13	- 99
1.0	.20	148	8.3	2.60	129	-16.1	.156	- 3	.16	-109
1.5	.14	136	8.1	2.54	104	-15.6	.166	-4	.22	- 124
2.0	.10	136	7.9	2.48	80	-14.8	.181	- 6	.25	-139
2.5	.08	161	7.4	2.34	62	-14.3	.193	- 5	.28	-147
3.0	.10	178	7.0	2.24	39	-13.7	.206	-11	.31	-157
3.5	.13	176	6.6	2.13	18	-12.6	.233	-18	.34	-167
4.0	.14	163	5.9	1.97	- 3	-11.9	.253	– 25	.36	-176
4.5	.14	133	5.3	1.83	- 23	-11.3	.273	- 33	.37	174
5.0	.16	91	4.5	1.69	-343	-10.5	.299	-4 3	.37	162

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

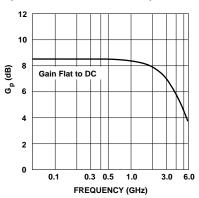


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 90 mA.

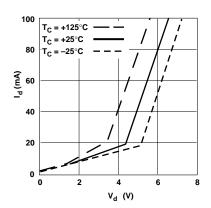


Figure 2. Device Current vs. Voltage.

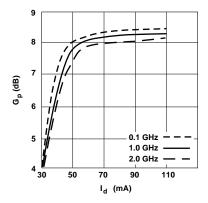


Figure 3. Power Gain vs. Current.

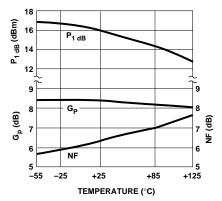


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d = 90 \text{mA}$.

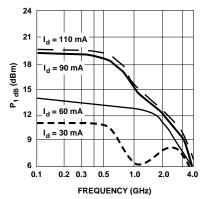


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

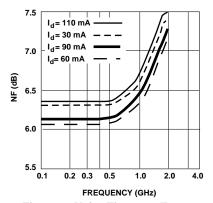
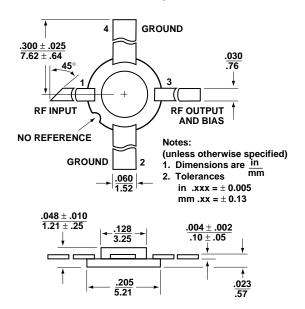



Figure 6. Noise Figure vs. Frequency.

200 mil BeO Package Dimensions

